Volume 1, Issue 1 (Winter 2020)                   J Vessel Circ 2020, 1(1): 1-7 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nadi F, Azizi-Fini I, Izadi-Avanji F S. Impact of Continuous Positive Airway Pressure (CPAP) Masks on Arterial Blood Gas Parameters and Pulmonary Side Effects after Open-heart Surgery. J Vessel Circ 2020; 1 (1) :1-7
URL: http://jvessels.muq.ac.ir/article-1-30-en.html
1- Faculty of Nursing and Midwifery, Kashan University of Medical Sciences, دانشکده پرستاری ومامایی
2- Center of Trauma Nursing Research, Kashan University of Medical science, دانشکده پرستاری ومامایی
Abstract:   (2463 Views)
Background and Aim: Pulmonary side effects are one of the most prevalent and critical sequels following open-heart surgery. A preventive measure for pulmonary side effects after open-heart surgery is to apply continuous positive airway pressure (CPAP) masks. However, studies regarding the usage of these masks have demonstrated contradictory results. Therefore, the present investigation aimed to evaluate the influence of CPAP masks on reducing pulmonary side effects following open-heart surgery.  
Materials and Methods: This clinical trial was performed on 72 subjects selected through the continuous sampling method out of the patients with open-heart surgery and were assigned to two groups of 36 in 2015 in Kashan, Iran. The participants in the test group went under CPAP with 5 cmH2O pressure immediately post-extubation for five times of 30 min with the intervals of 8 h (a total of 150 min during 40 h). On the other hand, the subjects of the control group only received the routine care of the department. Pulmonary sequels, including pleural effusion, pneumothorax, and atelectasis, in addition to some other variables, namely PO2, PCO2, oxygen saturation (O2 Sat), and respiratory rate (RR) were assessed. All the data were analyzed by the Chi-square test and independent t-test.          
Results: Our findings demonstrated that CPAP application can significantly diminish the occurrence of atelectasis and pleural effusion after open-heart surgery (P<0.05). Moreover, the results revealed that CPAP mask usage leads to a significant reduction in RR and arterial PCO2, while elevates PO2 and O2 Sat significantly (P<0.05).
Conclusion: Results of the current study showed that the non-invasive application of CPAP mask immediately post-extubation in patients who undergo open-heart surgery can effectively improve pulmonary function and decrease the incidence of pulmonary side effects, such as atelectasis.
 
Full-Text [PDF 803 kb]   (734 Downloads) |   |   Full-Text (HTML)  (964 Views)  
Type of Study: Research | Subject: vascular surgery
Received: 2019/12/2 | Accepted: 2020/01/4 | Published: 2020/01/30

References
1. 1. Afazel M, Nadi F, Pour-Abbasi M, Azizi-Fini I, Rajabi M. The effects of continuous positive airway pressure mask on hemodynamic parameters after open heart surgery: a randomized controlled trial. Nurs Midwifery Stud 2017;6(3):109-14. Link [DOI:10.4103/nms.nms_20_17]
2. Zarbock A, Mueller E, Netzer S, Gabriel A, Feindt P, Kindgen-Milles D. Prophylactic nasal continuous positive airway pressure following cardiac surgery protects from postoperative pulmonary complications: a prospective, randomized, controlled trial in 500 patients. Chest 2009;135(5):1252-9. PMID: 19017864 [DOI:10.1378/chest.08-1602]
3. Davoudi M, Farhanchi A, Moradi A, Bakhshaei MH, Safarpour G. The effect of low tidal volume ventilation during cardiopulmonary bypass on postoperative pulmonary function. J Tehran Heart Cent 2010;5(3):128-31. PMID: 23074580
4. Chaney MA, Nikolov MP, Blakeman BP, Bakhos M. Protective ventilation attenuates postoperative pulmonary dysfunction in patients undergoing cardiopulmonary bypass. J Cardiothorac Vasc Anesth 2000;14(5):514-8. PMID: 11052430 [DOI:10.1053/jcan.2000.9487]
5. Alavi M, Pakrooh B, Mirmesdagh Y, Bakhshandeh H, Babaee T, Hosseini S, et al. The effects of positive airway pressure ventilation during cardiopulmonary bypass on pulmonary function following open heart surgery. Res Cardiovasc Med 2013;2(2):79-84. PMID: 25478498 [DOI:10.5812/cardiovascmed.8129]
6. Nakazato K, Takeda S, Tanaka K, Sakamoto A. Aggressive treatment with noninvasive ventilation for mild acute hypoxemic respiratory failure after cardiovascular surgery. J Cardiothoracic Surg 2012;7:41. PMID: 22554005 [DOI:10.1186/1749-8090-7-41]
7. Light RW, Rogers JT, Moyers JP, Lee YG, Rodriguez RM, Alford Jr WC, et al. Prevalence and clinical course of pleural effusions at 30 days after coronary artery and cardiac surgery. Am J Respir Crit Care Med 2002;166(12 Pt 1):1567-71. PMID: 12406850 [DOI:10.1164/rccm.200203-184OC]
8. Pantoni CB, Di Thommazo L, Mendes RG, Catai AM, Luzzi S, Amaral Neto O, et al. Effect of different levels of positive airway pressure on breathing pattern and heart rate variability after coronary artery bypass grafting surgery. Braz J Med Biol Res 2011;44(1):38-45. PMID: 21085891 [DOI:10.1590/S0100-879X2010007500129]
9. Figueirêdo L, Araújo S, Abdala RC, Abdala A, Guedes CA. CPAP at 10 cm H2O during cardiopulmonary bypass does not improve postoperative gas exchange. Rev Bras Cir Cardiovasc 2008;23(2):209-15. PMID: 18820784 [DOI:10.1590/S0102-76382008000200010]
10. Moreno AM, Castro R, Sorares P, Sant'Anna M, Cravo S, Nóbrega A. Longitudinal evaluation the pulmonary function of the pre and postoperative periods in the coronary artery bypass graft surgery of patients treated with a physiotherapy protocol. J Cardiothorac Surg 2011;6:62. PMID: 21524298 [DOI:10.1186/1749-8090-6-62]
11. Freitas ER, Soares BG, Cardoso JR, Atallah ÁN. Incentive spirometry for preventing pulmonary complications after coronary artery bypass graft. Cochrane Database Syst Rev 2012;9:CD004466. PMID: 22972072 [DOI:10.1002/14651858.CD004466.pub3]
12. Wynne R, Botti M. Postoperative pulmonary dysfunction in adults after cardiac surgery with cardiopulmonary bypass: clinical significance and implications for practice. Am J Crit Care 2004;13(5):384-93. PMID: 15470854 [DOI:10.4037/ajcc2004.13.5.384]
13. Denehy L, Berney S. The use of positive pressure devices by physiotherapists. Eur Respir J 2001;17(4):821-9. PMID: 11401079 [DOI:10.1183/09031936.01.17408210]
14. Lin C, Yu H, Fan H, Li Z. The efficacy of noninvasive ventilation in managing postextubation respiratory failure: a meta-analysis. Heart Lung 2014;43(2):99-104. PMID: 24594246 [DOI:10.1016/j.hrtlng.2014.01.002]
15. Brown LK, Javaheri S. Positive airway pressure device technology past and present: what's in the "Black Box"? Sleep Med Clin 2017;12(4):501-15. PMID: 29108606 [DOI:10.1016/j.jsmc.2017.07.001]
16. Martí C, García L, Ornaque I, Digon E, Fustrán N, Bartolomé C, et al. Effectiveness of continuous positive airway pressure (CPAP) face mask Boussignac-Vygon as a treatment of acute respiratory failure. Infection 2005;1:158. Link [DOI:10.1097/00003643-200505001-00566]
17. Al-Mutairi FH, Fallows SJ, Abukhudair WA, Islam BB, Morris MM. Difference between continuous positive airway pressure via mask therapy and incentive spirometry to treat or prevent post-surgical atelectasis. Saudi Med J 2012;33(11):1190-5. PMID: 23147875
18. El-Kader SM. Blood gases response to different breathing modalities in phase I of cardiac rehabilitation program after coronary artery bypass graft. Eur J Gen Med 2011;8(2):85-91. Link [DOI:10.29333/ejgm/82706]
19. Altmay E, Karaca P, Yurtseven N, Özkul V, Aksoy T, Özler A, et al. Continuous positive airway pressure does not improve lung function after cardiac surgery. Can J Anaesth 2006;53(9):919-25. PMID: 16960270 [DOI:10.1007/BF03022835]
20. Akar Bayram N, Ciftci B, Durmaz T, Keles T, Yeter E, Akcay M, et al. Effects of continuous positive airway pressure therapy on left ventricular function assessed by tissue Doppler imaging in patients with obstructive sleep apnoea syndrome. Eur J Echocardiogr 2009;10(3):376-82. PMID: 18845553 [DOI:10.1093/ejechocard/jen257]
21. Souza Possa S, Braga Amador C, Meira Costa A, Takahama Sakamoto E, Seiko Kondo C, Maida Vasconcellos AL, et al. Implementation of a guideline for physical therapy in the postoperative period of upper abdominal surgery reduces the incidence of atelectasis and length of hospital stay. Rev Port Pneumol 2014;20(2):69-77. PMID: 24290563 [DOI:10.1016/j.rppnen.2014.03.004]
22. Pasquina P, Merlani P, Granier JM, Ricou B. Continuous positive airway pressure versus noninvasive pressure support ventilation to treat atelectasis after cardiac surgery. Anesth Analg 2004;99(4):1001-8. PMID: 15385340 [DOI:10.1213/01.ANE.0000130621.11024.97]
23. Ferreyra GP, Baussano I, Squadrone V, Richiardi L, Marchiaro G, Del Sorbo L, et al. Continuous positive airway pressure for treatment of respiratory complications after abdominal surgery: a systematic review and meta-analysis. Ann Surg 2008;247(4):617-26. PMID: 18362624 [DOI:10.1097/SLA.0b013e3181675829]
24. Zarbock A, Mueller E, Netzer S, Gabriel A, Feindt P, Kindgen-Milles D. Prophylactic nasal continuous positive airway pressure following cardiac surgery protects from postoperative pulmonary complications: a prospective, randomized, controlled trial in 500 patients. Chest 2009;135(5):1252-9. PMID: 19017864 [DOI:10.1378/chest.08-1602]
25. Oliveira JF, Mello FC, Rodrigues RS, Boechat AL, Conde MB, Menezes SL. Effect of continuous positive airway pressure on fluid absorption among patients with pleural effusion due to tuberculosis. Rev Bras Fisioter 2010;14(2):127-32. PMID: 20464170 [DOI:10.1590/S1413-35552010005000001]
26. Naughton MT, Rahman MA, Hara K, Floras JS, Bradley TD. Effect of continuous positive airway pressure on intrathoracic and left ventricular transmural pressures in patients with congestive heart failure. Circulation 1995;91(6):1725-31. PMID: 7882480 [DOI:10.1161/01.CIR.91.6.1725]
27. Gust R, Gottcchalk A, Schmidt H, Böttiger BW, Böhrer H, Martin E. Effects of continuous (CPAP) and bi-level positive airway pressure (BiPAP) on extravascular lung water after extubation of the trachea in patients following coronary artery bypass grafting. Intensive Care Med 1996;22(12):1345-50. PMID: 8986484 [DOI:10.1007/BF01709549]
28. Pengo MF, Bonafini S, Fava C, Steier J. Cardiorespiratory interaction with continuous positive airway pressure. J Thorac Dis 2018;10(Suppl 1):S57-70. PMID: 29445529 [DOI:10.21037/jtd.2018.01.39]
29. Kaye DM, Mansfield D, Naughton MT. Continuous positive airway pressure decreases myocardial oxygen consumption in heart failure. Clin Sci 2004;106(6):599-603. PMID: 14756635 [DOI:10.1042/CS20030265]
30. Vianello A, Arcaro G, Gallan F, Ori C, Bevilacqua M. Pneumothorax associated with long-term non-invasive positive pressure ventilation in Duchenne muscular dystrophy. Neuromuscul Disord 2004;14(6):353-5. PMID: 15145335 [DOI:10.1016/j.nmd.2004.03.002]
31. Lee BR, Shin SH, Kim MJ, Kim E, Choi YJ, Park JD, et al. Clinical characteristics of pediatric pneumothorax during a noninvasive positive pressure ventilation. Allergy Asthma Respir Dis 2019;7(1):51-6. Link [DOI:10.4168/aard.2019.7.1.51]
32. Gunduz M, Unlugenc H, Ozalevli M, Inanoglu K, Akman H. A comparative study of continuous positive airway pressure (CPAP) and intermittent positive pressure ventilation (IPPV) in patients with flail chest. Emerg Med J 2005;22(5):325-9. PMID: 15843697 [DOI:10.1136/emj.2004.019786]
33. Pinto VL, Sharma S. Continuous positive airway pressure (CPAP). New York: StatPearls Publishing; 2019. PMID: 29489216

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Vessels and Circulation

Designed & Developed by : Yektaweb