Volume 4, Issue 3 (Summer 2023)                   J Vessel Circ 2023, 4(3): 84-94 | Back to browse issues page

Ethics code: IR.BMSU.BAQ.REC.1400.038


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shahvardi S, Seifi M, Ghadian A, Shaverdi A, Kazemi H. Comparative Diagnostic Value of Magnetic Resonance Spectroscopy and Pathology for Prostate Malignancy. J Vessel Circ 2023; 4 (3) :84-94
URL: http://jvessels.muq.ac.ir/article-1-270-en.html
1- Department of Radiology, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.
2- Department of Radiology, School of Medicine, Baqiyat Al-Azam Hospital, Baqiyatallah University of Medical Sciences, Tehran, Iran.
3- Department of Urology, Nephrology and Urology Research Center, School of Medicine, Clinical Sciences Research Institute, Baqiyat Al-Azam Hospital, Baqiyatullah University of Medical Sciences, Tehran, Iran.
4- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
5- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
Abstract:   (361 Views)
Background and Aim: Considering the non-invasiveness, sensitivity, and specificity of magnetic resonance spectroscopy (MRS), as well as its ability to diagnose prostate lesions in the early stages, this study aimed to determine the value of the MRS method compared to the standard method (pathology) for diagnosing prostate cancer.
Materials and Methods: This analytical cross-sectional study was conducted on 35 male patients. Individuals with indications for prostate biopsy were first subjected to a prostate-specific antigen (PSA) test and a finger examination. It should be noted that the negative or positive result of MRS, in terms of the imaging method used for the patients did not affect the biopsy. After evaluating the patients using the MRS method, the MRS and prostate biopsy results were assessed for each patient separately and compared with the pathological results of the biopsy. To determine the diagnostic value of the test, sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were calculated.
Results: The sensitivity, specificity, positive, and negative predictive value of MRS in the left prostate region were calculated as 100%, 66.7%, 33.3%, and 100%, respectively. On the right side of the prostate, these values were 50%, 93%, 50%, and 93%, respectively. The diagnostic accuracy of MRS was 71.4% in the diagnosis of prostate cancer in the left area and 88.57% in the right area. On both sides, the test’s sensitivity, specificity, and positive and negative predictive value were 87.5%, 59.3%, 38.9%, and 94.1%, respectively, and the diagnostic accuracy of neoadjuvant systemic therapy was 65.7%.
Conclusion: MRS, as a non-invasive method, demonstrates optimal sensitivity, specificity, and accuracy compared to other pathological and clinical methods.
Full-Text [PDF 685 kb]   (88 Downloads) |   |   Full-Text (HTML)  (50 Views)  
Type of Study: Research | Subject: interventional vascular radiology
Received: 2023/12/12 | Accepted: 2024/01/15 | Published: 2024/02/29

References
1. Culp MB, Soerjomataram I, Efstathiou JA, Bray F, Jemal A. Recent global patterns in prostate cancer incidence and mortality rates. Eur Urol. 2020; 77(1):38-52. [DOI:10.1016/j.eururo.2019.08.005] [PMID] [DOI:10.1016/j.eururo.2019.08.005]
2. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019; 144(8):1941-53. [DOI:10.1002/ijc.31937] [PMID] [DOI:10.1002/ijc.31937]
3. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, et al. Global cancer observatory: Cancer today. Lyon, France: International Agency for Research on Cancer; 2018. [Link]
4. D'Amico AV, Whittington R, Malkowicz SB, Schultz D, Blank K, Broderick GA, et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA. 1998; 280(11):969-74. [DOI:10.1001/jama.280.11.969] [PMID] [DOI:10.1001/jama.280.11.969]
5. Lardas M, Liew M, van den Bergh RC, De Santis M, Bellmunt J, Van den Broeck T, et al. Quality of life outcomes after primary treatment for clinically localized prostate cancer: A systematic review. Eur Urol. 2017; 72(6):869-85. [DOI:10.1016/j.eururo.2017.06.035] [PMID] [DOI:10.1016/j.eururo.2017.06.035]
6. Saad F. Importance of early treatment in metastatic prostate cancer: A question of life or death. Lancet Oncol. 2019; 20(5):609-611. [DOI:10.1016/S1470-2045(19)30155-X] [PMID] [DOI:10.1016/S1470-2045(19)30155-X]
7. Djavan B, Waldert M, Zlotta A, Dobronski P, Seitz C, Remzi M, et al. Safety and morbidity of first and repeat transrectal ultrasound guided prostate needle biopsies: Results of a prospective European prostate cancer detection study. J Urol. 2001; 166(3):856-60. [DOI:10.1016/S0022-5347(05)65851-X] [PMID] [DOI:10.1016/S0022-5347(05)65851-X]
8. Thompson IM, Pauler DK, Goodman PJ, Tangen CM, Lucia MS, Parnes HL, et al. Prevalence of prostate cancer among men with a prostate-specific antigen level≤ 4.0 ng per milliliter. N Engl J Med. 2004; 350(22):2239-46. [DOI:10.1056/NEJMoa031918] [PMID] [DOI:10.1056/NEJMoa031918]
9. Goris Gbenou MC. Editorial Comment to Magnetic resonance spectroscopy imaging-directed transrectal ultrasound biopsy increases prostate cancer detection in men with prostate-specific antigen between 4-10 ng/mL and normal digital rectal examination. Int J Urol. 2014; 21(3):262-3. [PMID] [DOI:10.1111/iju.12274]
10. Thörmer G, Otto J, Horn LC, Garnov N, Do M, Franz T, et al. Non-invasive estimation of prostate cancer aggressiveness using diffusion-weighted MRI and 3D proton MR spectroscopy at 3.0 T. Acta Radiol. 2015; 56(1):121-8. [DOI:10.1177/0284185113520311] [PMID] [DOI:10.1177/0284185113520311]
11. Panebianco V, Barchetti F, Musio D, Forte V, Pace A, De Felice F, et al. Metabolic atrophy and 3‐T 1 H‐magnetic resonance spectroscopy correlation after radiation therapy for prostate cancer. BJU Int. 2014; 114(6):852-9. [DOI:10.1111/bju.12553] [PMID] [DOI:10.1111/bju.12553]
12. Berker Y, Vandergrift LA, Wagner I, Su L, Kurth J, Schuler A, et al. Magnetic resonance spectroscopy-based metabolomic biomarkers for typing, staging, and survival estimation of early-stage human lung cancer. Sci Rep. 2019; 9(1):10319. [DOI:10.1038/s41598-019-46643-5] [PMID] [DOI:10.1038/s41598-019-46643-5]
13. Matlaga BR, Eskew LA, McCullough DL. Prostate biopsy: Indications and technique. J Urol. 2003; 169(1):12-9. [DOI:10.1016/S0022-5347(05)64024-4] [PMID] [DOI:10.1016/S0022-5347(05)64024-4]
14. Squillaci E, Manenti G, Mancino S, Carlani M, Di Roma M, Colangelo V, et al. MR spectroscopy of prostate cancer. Initial clinical experience. J Exp Clin Cancer Res. 2005; 24(4):523-30. [PMID]
15. Sharma U, Jagannathan NR. Metabolism of prostate cancer by magnetic resonance spectroscopy (MRS). Biophys Rev. 2020; 12(5):1163-73. [DOI:10.1007/s12551-020-00758-6] [PMID] [DOI:10.1007/s12551-020-00758-6]
16. Borley N, Feneley MR. Prostate cancer: Diagnosis and staging. Asian J Androl. 2009; 11(1):74-80. [DOI:10.1038/aja.2008.19] [PMID] [DOI:10.1038/aja.2008.19]
17. Canto EI, Shariat SF, Slawin KM. Biochemical staging of prostate cancer. Urol Clin North Am. 2003; 30(2):263-77.[DOI:10.1016/S0094-0143(02)00183-0] [PMID] [DOI:10.1016/S0094-0143(02)00183-0]
18. Umbehr M, Bachmann LM, Held U, Kessler TM, Sulser T, Weishaupt D, et al. Combined magnetic resonance imaging and magnetic resonance spectroscopy imaging in the diagnosis of prostate cancer: A systematic review and meta-analysis. Eur Urol. 2009; 55(3):575-90. [DOI:10.1016/j.eururo.2008.10.019] [PMID] [DOI:10.1016/j.eururo.2008.10.019]
19. Glunde K, Artemov D, Penet MF, Jacobs MA, Bhujwalla ZM. Magnetic resonance spectroscopy in metabolic and molecular imaging and diagnosis of cancer. Chem Rev. 2010; 110(5):3043-59. [DOI:10.1021/cr9004007] [PMID] [DOI:10.1021/cr9004007]
20. Sharma U, Agarwal K, Hari S, Mathur SR, Seenu V, Parshad R, et al. Role of diffusion weighted imaging and magnetic resonance spectroscopy in breast cancer patients with indeterminate dynamic contrast enhanced magnetic resonance imaging findings. Magn Reson Imaging. 2019; 61:66-72. [DOI:10.1016/j.mri.2019.05.032] [PMID] [DOI:10.1016/j.mri.2019.05.032]
21. Claus FG, Hricak H, Hattery RR. Pretreatment evaluation of prostate cancer: Role of MR imaging and 1H MR spectroscopy. Radiographics. 2004; 24(suppl_1):S167-S80. [DOI:10.1148/24si045516] [PMID] [DOI:10.1148/24si045516]
22. Cookson MS, Fleshner NE, Soloway SM, Fair WR. Correlation between Gleason score of needle biopsy and radical prostatectomy specimen: Accuracy and clinical implications. J Urol. 1997; 157(2):559-62. [DOI:10.1016/S0022-5347(01)65201-7] [PMID] [DOI:10.1016/S0022-5347(01)65201-7]
23. Zabihzadeh M, Fatahi J, Farzanegan Z, Hosseini SM, Sarkarian M, Momen GM. [MRS efficacy in distinction between benign and malignant prostatic lesions (Persian)]. Jundishapur Sci Med J. 2018; 17(4):355-65. [Link]
24. Cai W, Zhu D, Byanju S, Chen J, Zhang H, Wang Y, et al. Magnetic resonance spectroscopy imaging in the diagnosis of suspicious prostate cancer: A meta-analysis. Medicine. 2019; 98(14):e14891. [DOI:10.1097/MD.0000000000014891] [PMID] [DOI:10.1097/MD.0000000000014891]
25. Yu KK, Scheidler J, Hricak H, Vigneron DB, Zaloudek CJ, Males RG, et al. Prostate cancer: Prediction of extracapsular extension with endorectal MR imaging and three-dimensional proton MR spectroscopic imaging. Radiology. 1999; 213(2):481-8. [DOI:10.1148/radiology.213.2.r99nv26481] [PMID] [DOI:10.1148/radiology.213.2.r99nv26481]
26. Yuen JS, Thng CH, Tan PH, Khin LW, Phee SJ, Xiao D, et al. Endorectal magnetic resonance imaging and spectroscopy for the detection of tumor foci in men with prior negative transrectal ultrasound prostate biopsy. J Urol. 2004; 171(4):1482-6. [DOI:10.1097/01.ju.0000118380.90871.ef] [PMID] [DOI:10.1097/01.ju.0000118380.90871.ef]
27. Zakian KL, Sircar K, Hricak H, Chen HN, Shukla-Dave A, Eberhardt S, et al. Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy. Int Brazilian J Urology (Impresso). 2005; 31. [Link] [DOI:10.1148/radiol.2343040363]
28. Weis J, Ahlström H, Hlavcak P, Häggman M, Ortiz-Nieto F, Bergman A. Two-dimensional spectroscopic imaging for pretreatment evaluation of prostate cancer: Comparison with the step-section histology after radical prostatectomy. Magn Reson Imaging. 2009; 27(1):87-93. [DOI:10.1016/j.mri.2008.05.010] [PMID] [DOI:10.1016/j.mri.2008.05.010]
29. Ghafoori M, Rasteh M. The relationship between choline plus creatine-to-citrate ratio in magnetic resonance spectroscopy with the invasion of prostate cancer. Tehran Univ Med J. 2012; 70(9):571. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Vessels and Circulation

Designed & Developed by : Yektaweb