Volume 3, Issue 3 (Summer 2022)                   J Vessel Circ 2022, 3(3): 117-124 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bafandeh Garamaleki H, Zamanlu M, Ahmadi E, MohammadZadeh P, Sharifipour E. The Promising Options of Heart Rate Variability (HRV) for stroke- a Narrative Review of the Literature and Clinical Translation. J Vessel Circ 2022; 3 (3) :117-124
URL: http://jvessels.muq.ac.ir/article-1-224-en.html
1- Department of Psychology, Faculty of Education & Psychology, Azarbaijan Shahid Madani University, Tabriz, Iran.
2- Neuroscience Research Center, Qom University of Medical Sciences, Qom, Iran., قم، مرکز تخقیقات علوم اعصاب، بیمارستان شهید بهشتی
3- Department of Psychology, Faculty of Education & Psychology, Azarbaijan Shahid Madani University, Tabriz, Iran., قم، مرکز تخقیقات علوم اعصاب، بیمارستان شهید بهشتی
4- Department of Neurology, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran.
Abstract:   (788 Views)
Background and Aim: This article is an attempt to summarize the most updated information on heart rate variability (HRV) in ischemic stroke and to contribute to the clinical translation of this field. A wide range of pathologies, including vascular diseases (with stroke as a hallmark), are related to HRV. The parameters of this phenomenon can open a window to improve clinical approaches. The interval between two consecutive heartbeats is changed by the autonomic nervous system and these changes are called heart rate variability or HRV. Higher range and complexity of HRV fluctuations indicate better and more effective vascular and autonomic self-regulation and repair capacities.
Materials and Methods: The keywords including “heart rate variability”, stroke, and “cerebrovascular event” were used and PubMed, Scopus, SID, and Google Scholar databases were searched. Reference books on neurology and clinical neurosciences were also used. Researchers checked the relevance of the documents and excluded irrelevant findings.
Results: Several book chapters, together with 50 related reports and journal articles were identified, all of which were studied. The important and acceptable concept line of this field was extracted and reported here.
Conclusion: HRV fluctuations decrease after ischemic stroke, therefore, they show autonomic impairments leading to an increase in sympathetic activity and a decrease in parasympathetic activity in the acute stage of stroke. These changes may persist and be associated with an increased risk of subsequent mortality. In patients with acute ischemic stroke, HRV could be a biomarker with prognostic value and may differentiate favorable and unfavorable outcomes of treatments. Moreover, HRV parameters have a predictive value for the occurrence of ischemic stroke, especially in normal people or patients with significant vascular risks. Overall, HRV recording can be valuable not as an independent tool but as a complement to remove barriers and gaps in the clinical management of stroke; and perform the task of objectifying the patients’ vascular conditions and alterations. Recording these parameters is practical, inexpensive, portable, and therefore, easily implemented in various clinical situations.
Full-Text [PDF 639 kb]   (252 Downloads) |   |   Full-Text (HTML)  (204 Views)  
Type of Study: Review | Subject: stroke
Received: 2022/05/15 | Accepted: 2023/01/9 | Published: 2022/11/1

References
1. Gilbert C. The clinical handbook of biofeedback: A step-by-step guide for training and practice with mindfulness. Inna Z. Khazan, PhD, BCB (2013), chichester, UK: John Wiley & Sons. Biofeedback. 2014; 42(3):130-2. [DOI:10.5298/1081-5937-42.3.05] [DOI:10.5298/1081-5937-42.3.05]
2. Kleiger RE, Miller JP, Krone RJ, Bigger JT Jr. The independence of cycle length variability and exercise testing on predicting mortality of patients surviving acute myocardial infarction. The multicenter postinfarction research group. Am J Cardiol. 1990; 65(7):408-11. [DOI:10.1016/0002-9149(90)90801-7] [PMID] [DOI:10.1016/0002-9149(90)90801-7]
3. Fotuhi P, Combs W, Condie C, Theres H, Schneider T, Stangl K, et al. R-wave detection by subcutaneous ECG. Possible use for analyzing R-R variability. Ann Noninvasive Electrocardiol. 2001; 6(1):18-23. [DOI:10.1111/j.1542-474X.2001.tb00081.x] [PMID] [PMCID] [DOI:10.1111/j.1542-474X.2001.tb00081.x]
4. Bigger JT Jr, Fleiss JL, Steinman RC, Rolnitzky LM, Kleiger RE, Rottman JN. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation. 1992; 85(1):164-71. [DOI:10.1161/01.CIR.85.1.164] [PMID] [DOI:10.1161/01.CIR.85.1.164]
5. Goy JJ, Stauffer JC, Schlaepfer J, Christeler P. Electrocardiography (ECG). Sharjah: Bentham Science Publishers; 2013. [DOI:10.2174/97816080547941130101] [DOI:10.2174/97816080547941130101]
6. Brüser C, Stadlthanner K, de Waele S, Leonhardt S. Adaptive beat-to-beat heart rate estimation in ballistocardiograms. IEEE Trans Inf Technol Biomed. 2011; 15(5):778-86. [DOI:10.1109/TITB.2011.2128337] [PMID] [DOI:10.1109/TITB.2011.2128337]
7. Brüser C, Winter S, Leonhardt S. Unsupervised heart rate variability estimation from ballistocardiograms. IntJ Bioelectromagn. 2013; 15(1):1-6. [Link]
8. Frattola A, Parati G, Cuspidi C, Albini F, Mancia G. Prognostic value of 24-hour blood pressure variability. J Hypertens. 1993; 11(10):1133-7. [DOI:10.1097/00004872-199310000-00019] [PMID] [DOI:10.1097/00004872-199310000-00019]
9. Elgendi M. On the analysis of fingertip photoplethysmogram signals. Curr Cardiol Rev. 2012; 8(1):14-25. [DOI:10.2174/157340312801215782] [PMID] [PMCID] [DOI:10.2174/157340312801215782]
10. Burlacu A, Brinza C, Popa IV, Covic A, Floria M. Influencing cardiovascular outcomes through heart rate variability modulation: A systematic review. Diagnostics. 2021; 11(12):2198. [DOI:10.3390/diagnostics11122198] [PMID] [PMCID] [DOI:10.3390/diagnostics11122198]
11. La Rovere MT, Pinna GD, Hohnloser SH, Marcus FI, Mortara A, Nohara R, et al. Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: implications for clinical trials. Circulation. 2001; 103(16):2072-7. [DOI:10.1161/01.CIR.103.16.2072] [PMID] [DOI:10.1161/01.CIR.103.16.2072]
12. Bigger JT Jr, Fleiss JL, Steinman RC, Rolnitzky LM, Schneider WJ, Stein PK. RR variability in healthy, middle-aged persons compared with patients with chronic coronary heart disease or recent acute myocardial infarction. Circulation. 1995; 91(7):1936-43. [DOI:10.1161/01.CIR.91.7.1936] [PMID] [DOI:10.1161/01.CIR.91.7.1936]
13. Schroeder EB, Liao D, Chambless LE, Prineas RJ, Evans GW, Heiss G. Hypertension, blood pressure, and heart rate variability: the atherosclerosis risk in communities (ARIC) study. Hypertension. 2003; 42(6):1106-11. [DOI:10.1161/01.HYP.0000100444.71069.73] [PMID] [DOI:10.1161/01.HYP.0000100444.71069.73]
14. Skinner JE, Weiss DN, Anchin JM, Turianikova Z, Tonhajzerova I, Javorkova J, et al. Nonlinear PD2i heart rate complexity algorithm detects autonomic neuropathy in patients with type 1 diabetes mellitus. Clin Neurophysiol. 2011; 122(7):1457-62. [DOI:10.1016/j.clinph.2010.12.046] [PMID] [DOI:10.1016/j.clinph.2010.12.046]
15. Cowan MJ, Pike KC, Budzynski HK. Psychosocial nursing therapy following sudden cardiac arrest: Impact on two-year survival. Nurs Res. 2001; 50(2):68-76.[DOI:10.1097/00006199-200103000-00002] [PMID] [DOI:10.1097/00006199-200103000-00002]
16. Del Pozo JM, Gevirtz RN, Scher B, Guarneri E. Biofeedback treatment increases heart rate variability in patients with known coronary artery disease. Am Heart J. 2004; 147(3):E11. [DOI:10.1016/j.ahj.2003.08.013] [PMID] [DOI:10.1016/j.ahj.2003.08.013]
17. Nolan RP, Kamath MV, Floras JS, Stanley J, Pang C, Picton P, et al. Heart rate variability biofeedback as a behavioral neurocardiac intervention to enhance vagal heart rate control. Am Heart J. 2005; 149(6):1137. [DOI:10.1016/j.ahj.2005.03.015] [PMID] [DOI:10.1016/j.ahj.2005.03.015]
18. Swanson KS, Gevirtz RN, Brown M, Spira J, Guarneri E, Stoletniy L. The effect of biofeedback on function in patients with heart failure. Appl Psychophysiol Biofeedback. 2009; 34(2):71-91. [DOI:10.1007/s10484-009-9077-2] [PMID] [DOI:10.1007/s10484-009-9077-2]
19. McCraty R, Atkinson M, Tomasino D. Impact of a workplace stress reduction program on blood pressure and emotional health in hypertensive employees. J Altern Complement Med. 2003; 9(3):355-69. [DOI:10.1089/107555303765551589] [PMID] [DOI:10.1089/107555303765551589]
20. Joseph CN, Porta C, Casucci G, Casiraghi N, Maffeis M, Rossi M, et al. Slow breathing improves arterial baroreflex sensitivity and decreases blood pressure in essential hypertension. Hypertension. 2005; 46(4):714-8. [DOI:10.1161/01.HYP.0000179581.68566.7d] [PMID] [DOI:10.1161/01.HYP.0000179581.68566.7d]
21. Nolan RP, Floras JS, Harvey PJ, Kamath MV, Picton PE, Chessex C, et al. Behavioral neurocardiac training in hypertension: A randomized, controlled trial. Hypertension. 2010; 55(4):1033-9. [DOI:10.1161/HYPERTENSIONAHA.109.146233] [PMID] [DOI:10.1161/HYPERTENSIONAHA.109.146233]
22. Lehrer P, Carr RE, Smetankine A, Vaschillo E, Peper E, Porges S, et al. Respiratory sinus arrhythmia versus neck/trapezius EMG and incentive inspirometry biofeedback for asthma: a pilot study. Appl Psychophysiol Biofeedback. 1997; 22(2):95-109.[DOI:10.1023/A:1026224211993] [PMID] [DOI:10.1023/A:1026224211993]
23. Giardino ND, Chan L, Borson S. Combined heart rate variability and pulse oximetry biofeedback for chronic obstructive pulmonary disease: Preliminary findings. Appl Psychophysiol Biofeedback. 2004; 29(2):121-33.[DOI:10.1023/B:APBI.0000026638.64386.89] [PMID] [DOI:10.1023/B:APBI.0000026638.64386.89]
24. Humphreys PA, Gevirtz RN. Treatment of recurrent abdominal pain: Components analysis of four treatment protocols. J Pediatr Gastroenterol Nutr. 2000; 31(1):47-51. [DOI:10.1097/00005176-200007000-00011] [PMID] [DOI:10.1097/00005176-200007000-00011]
25. Sowder E, Gevirtz R, Shapiro W, Ebert C. Restoration of vagal tone: A possible mechanism for functional abdominal pain. Appl Psychophysiol Biofeedback. 2010; 35(3):199-206. [DOI:10.1007/s10484-010-9128-8] [PMID] [DOI:10.1007/s10484-010-9128-8]
26. Hassett AL, Radvanski DC, Vaschillo EG, Vaschillo B, Sigal LH, Karavidas MK, et al. A pilot study of the efficacy of heart rate variability (HRV) biofeedback in patients with fibromyalgia. Appl Psychophysiol Biofeedback. 2007; 32(1):1-10. [DOI:10.1007/s10484-006-9028-0] [PMID] [DOI:10.1007/s10484-006-9028-0]
27. Zucker TL, Samuelson KW, Muench F, Greenberg MA, Gevirtz RN. The effects of respiratory sinus arrhythmia biofeedback on heart rate variability and posttraumatic stress disorder symptoms: A pilot study. Appl Psychophysiol Biofeedback. 2009; 34(2):135-43. [DOI:10.1007/s10484-009-9085-2] [PMID] [DOI:10.1007/s10484-009-9085-2]
28. Tan G, Dao TK, Farmer L, Sutherland RJ, Gevirtz R. Heart rate variability (HRV) and posttraumatic stress disorder (PTSD): A pilot study. Appl Psychophysiol Biofeedback. 2011; 36(1):27-35. [DOI:10.1007/s10484-010-9141-y] [PMID] [DOI:10.1007/s10484-010-9141-y]
29. Thurber MR, Bodenhamer-Davis E, Johnson M, Chesky K, Chandler CK. Effects of heart rate variability coherence biofeedback training and emotional management techniques to decrease music performance anxiety. Biofeedback. 2010; 38(1):28-40. [DOI:10.5298/1081-5937-38.1.28] [DOI:10.5298/1081-5937-38.1.28]
30. Karavidas MK, Lehrer PM, Vaschillo E, Vaschillo B, Marin H, Buyske S, et al. Preliminary results of an open label study of heart rate variability biofeedback for the treatment of major depression. Appl Psychophysiol Biofeedback. 2007; 32(1):19-30. [DOI:10.1007/s10484-006-9029-z] [PMID] [DOI:10.1007/s10484-006-9029-z]
31. Siepmann M, Aykac V, Unterdörfer J, Petrowski K, Mueck-Weymann M. A pilot study on the effects of heart rate variability biofeedback in patients with depression and in healthy subjects. Appl Psychophysiol Biofeedback. 2008; 33(4):195-201. [DOI:10.1007/s10484-008-9064-z] [PMID] [DOI:10.1007/s10484-008-9064-z]
32. Norrving B. Stroke and cerebrovascular diseases. In: Ropper AH, Sumuels MA, Klein JP, Prasad S, editors. Adams and Victor's manual of neurology. New York: McGraw Hill; 2019. [Link]
33. Norrving B. Oxford textbook of stroke and cerebrovascular disease. Oxford: Oxford University Press; 2014. [DOI:10.1093/med/9780199641208.001.0001] [DOI:10.1093/med/9780199641208.001.0001]
34. Cygankiewicz I, Zareba W. Heart rate variability. Handb Clin Neurol. 2013; 117:379-93. [DOI:10.1016/B978-0-444-53491-0.00031-6] [PMID] [DOI:10.1016/B978-0-444-53491-0.00031-6]
35. Barron SA, Rogovski Z, Hemli J. Autonomic consequences of cerebral hemisphere infarction. Stroke. 1994; 25(1):113-6.[DOI:10.1161/01.STR.25.1.113] [PMID] [DOI:10.1161/01.STR.25.1.113]
36. Lakusic N, Mahovic D, Babic T. Gradual recovery of impaired cardiac autonomic balance within first six months after ischemic cerebral stroke. Acta Neurol Belg. 2005; 105(1):39-42. [PMID]
37. Bar-Ilan A, Weizmann K. Circadian rhythm of heart rate variability is reversibly abolished in ischemic stroke. Stroke. 1998; 29(11):2447. [DOI:10.1161/01.str.29.11.2447] [PMID] [DOI:10.1161/01.STR.29.11.2447]
38. McLaren A, Kerr S, Allan L, Steen IN, Ballard C, Allen J, et al. Autonomic function is impaired in elderly stroke survivors. Stroke. 2005; 36(5):1026-30.[DOI:10.1161/01.STR.0000160748.88374.ce] [PMID] [DOI:10.1161/01.STR.0000160748.88374.ce]
39. Silver FL, Norris JW, Lewis AJ, Hachinski VC. Early mortality following stroke: A prospective review. Stroke. 1984; 15(3):492-6. [DOI:10.1161/01.str.15.3.492] [PMID] [DOI:10.1161/01.STR.15.3.492]
40. Korpelainen JT, Sotaniemi KA, Mäkikallio A, Huikuri HV, Myllylä VV. Dynamic behavior of heart rate in ischemic stroke. Stroke. 1999; 30(5):1008-13. [DOI:10.1161/01.STR.30.5.1008] [PMID] [DOI:10.1161/01.STR.30.5.1008]
41. He L, Li C, Luo Y, Dong W, Yang H. Clinical prognostic significance of heart abnormality and heart rate variability in patients with stroke. Neurol Res. 2010; 32(5):530-4.[DOI:10.1179/174313209X431110] [PMID] [DOI:10.1179/174313209X431110]
42. Orlandi G, Fanucchi S, Strata G, Pataleo L, Landucci Pellegrini L, Prontera C, et al. Transient autonomic nervous system dysfunction during hyperacute stroke. Acta Neurol Scand. 2000; 102(5):317-21. [DOI:10.1034/j.1600-0404.2000.102005317.x] [PMID] [DOI:10.1034/j.1600-0404.2000.102005317.x]
43. Mäkikallio AM, Mäkikallio TH, Korpelainen JT, Sotaniemi KA, Huikuri HV, Myllylä VV. Heart rate dynamics predict poststroke mortality. Neurology. 2004; 62(10):1822-6.[DOI:10.1212/01.WNL.0000125190.10967.D5] [PMID] [DOI:10.1212/01.WNL.0000125190.10967.D5]
44. Tokgözoglu SL, Batur MK, Topçuoglu MA, Saribas O, Kes S, Oto A. Effects of stroke localization on cardiac autonomic balance and sudden death. Stroke. 1999; 30(7):1307-11.[DOI:10.1161/01.STR.30.7.1307] [PMID] [DOI:10.1161/01.STR.30.7.1307]
45. Colivicchi F, Bassi A, Santini M, Caltagirone C. Cardiac autonomic derangement and arrhythmias in right-sided stroke with insular involvement. Stroke. 2004; 35(9):2094-8.[DOI:10.1161/01.STR.0000138452.81003.4c] [PMID] [DOI:10.1161/01.STR.0000138452.81003.4c]
46. Buitrago-Ricaurte N, Cintra F, Silva GS. Heart rate variability as an autonomic biomarker in ischemic stroke. Arq Neuropsiquiatr. 2020; 78(11):724-32. [DOI:10.1590/0004-282x20200087] [PMID] [DOI:10.1590/0004-282x20200087]
47. He L, Wang J, Zhang L, Zhang X, Dong W, Yang H. Decreased fractal dimension of heart rate variability is associated with early neurological deterioration and recurrent ischemic stroke after acute ischemic stroke. J Neurol Sci. 2019; 396:42-7. [DOI:10.1016/j.jns.2018.11.006] [PMID] [DOI:10.1016/j.jns.2018.11.006]
48. Nozoe M, Yamamoto M, Kobayashi M, Kanai M, Kubo H, Shimada S, et al. Heart rate variability during early mobilization in patients with acute ischemic stroke. Eur Neurol. 2018; 80(1-2):50-4. [DOI:10.1159/000492794] [PMID] [DOI:10.1159/000492794]
49. He L, Wang J, Zhang L, Wang F, Dong W, Yang H. Admission heart rate variability is associated with poststroke depression in patients with acute mild-moderate ischemic stroke. Front Psychiatry. 2020; 11:696. [DOI:10.3389/fpsyt.2020.00696] [PMID] [PMCID] [DOI:10.3389/fpsyt.2020.00696]
50. Scherbakov N, Barkhudaryan A, Ebner N, von Haehling S, Anker SD, Joebges M, et al. Early rehabilitation after stroke: Relationship between the heart rate variability and functional outcome. ESC Heart Fail. 2020; 7(5):2983-2991. [DOI:10.1002/ehf2.12917] [PMID] [PMCID] [DOI:10.1002/ehf2.12917]
51. Belli TR, Souza LAPS, Bazan SGZ, Bazan R, Luvizutto GJ. Effects of rehabilitation programs on heart rate variability after stroke: A systematic review. Arq Neuropsiquiatr. 2021; 79(8):724-31. [DOI:10.1590/0004-282x-anp-2020-0420] [PMID] [DOI:10.1590/0004-282x-anp-2020-0420]
52. Binici Z, Mouridsen MR, Køber L, Sajadieh A. Decreased nighttime heart rate variability is associated with increased stroke risk. Stroke. 2011; 42(11):3196-201. [DOI:10.1161/STROKEAHA.110.607697] [PMID] [DOI:10.1161/STROKEAHA.110.607697]
53. Chairina G, Yoshino K, Kiyono K, Watanabe E. Ischemic stroke risk assessment by multiscale entropy analysis of heart rate variability in patients with persistent atrial fibrillation. Entrop. 2021; 23(7):918. [DOI:10.3390/e23070918] [PMID] [PMCID] [DOI:10.3390/e23070918]
54. Zali A, Arefian NM. [Heart rate variability (Persian)]. Res Med. 2012; 36(3) :163-6. [Link]
55. Camm AJ, Malik M, Bigger JT, Breithardt G, Cerutti S, Cohen RJ, et al. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European society of cardiology and the North American society of pacing and electrophysiology. Circulation. 1996; 93(5):1043-65. [DOI:10.1161/01.CIR.93.5.1043] [DOI:10.1161/01.CIR.93.5.1043]
56. Gujjar AR, Sathyaprabha TN, Nagaraja D, Thennarasu K, Pradhan N. Heart rate variability and outcome in acute severe stroke. Neurocrit Care 1, 347-353 (2004). [DOI:10.1385/NCC:1:3:347] [DOI:10.1385/NCC:1:3:347]
57. Colivicchi F, Bassi A, Santini M, Caltagirone C. Prognostic implications of right-sided insular damage, cardiac autonomic derangement, and arrhythmias after acute ischemic stroke. Stroke. 2005; 36(8):1710-5. [DOI:10.1161/01.STR.0000173400.19346.bd] [PMID] [DOI:10.1161/01.STR.0000173400.19346.bd]
58. Bassi A, Colivicchi F, Santini M, Caltagirone C. Cardiac autonomic dysfunction and functional outcome after ischaemic stroke. Eur J Neurol. 2007; 14(8):917-22.[DOI:10.1111/j.1468-1331.2007.01875.x] [PMID] [DOI:10.1111/j.1468-1331.2007.01875.x]
59. Bassi A, Colivicchi F, Santini M, Caltagirone C. Gender-specific predictors of functional outcome after stroke rehabilitation: potential role of the autonomic nervous system. Eur Neurol. 2010; 63(5):279-84. [DOI:10.1159/000287583] [PMID] [DOI:10.1159/000287583]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Vessels and Circulation

Designed & Developed by : Yektaweb