Volume 3, Issue 1 (Winter 2022)                   J Vessel Circ 2022, 3(1): 17-26 | Back to browse issues page

Ethics code: IR.QOM.REC.1399.002


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadeghian H, Siahkohian M, Akbarpour Beni M, Bolboli L. Effects of 8 Weeks Resistance Training on the Expression of MicroRNAs Associated With Adipose Tissue Angiogenesis in Rats on a High-Fat Diet. J Vessel Circ 2022; 3 (1) :17-26
URL: http://jvessels.muq.ac.ir/article-1-203-en.html
1- Department of Sports Science, Faculty of Literature and Humanities, University of Qom, Qom, Iran, University of Qom, Qom, Iran
2- Department of Sports Physiology, Faculty of Education and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran., University of Mohaghegh Ardabili, Ardabil, Iran
Abstract:   (703 Views)
Background and Aim: Recent research has shown that microRNAs (miRNAs) can be regarded as new biomarkers for metabolic and angiogenesis-related diseases. This study aimed to investigate the effect of 8 weeks of resistance training on the expression of miRNAs associated with adipose tissue angiogenesis in rats with a high-fat diet.
Materials and Methods: Forty male Wistar rats were randomly divided into four groups (each with 10 rats): normal diet, normal diet+resistance training, high-fat diet, and high-fat diet+resistance training. The resistance training groups performed 5 sessions of resistance training protocol each week for 8 weeks. After one week of familiarity with ladders, in the 2nd week, weights of 30% of body weight were attached to the rats’ tails, which gradually reached about 180% of their body weight by the end of 8 weeks. To evaluate the effect of resistance training and a high-fat diet on miR-221, miR-222, miR-329, and vascular endothelial growth factor (VEGF) variables, sampling of mesenteric adipose tissue was performed immediately after killing the animals.
Results: The levels of miR-221, miR-222, and VEGF in the resistance training group+normal diet and resistance training group+high-fat diet increased significantly compared to the control groups (P=0.001, and P=0.001, respectively). However, no significant difference was observed in any groups regarding miR-329 (P=0.103).
Conclusion: The results showed that resistance training increased microRNAs levels associated with adipose tissue angiogenesis in rats on a high-fat and normal diet.
Full-Text [PDF 963 kb]   (249 Downloads) |   |   Full-Text (HTML)  (241 Views)  
Type of Study: Research | Subject: vascular physiology
Received: 2022/02/23 | Accepted: 2022/03/7 | Published: 2022/07/1

References
1. Brixius K, Schoenberger S, Ladage D, Knigge H, Falkowski G, Hellmich M, et al. Long-term endurance exercise decreases antiangiogenic endostatin signalling in overweight men aged 50-60 years. Br J Sports Med. 2008; 42(2):126-9. [DOI:10.1136/bjsm.2007.035188] [PMID] [DOI:10.1136/bjsm.2007.035188]
2. Teng A, Blakely T, Atkinson J, Kalėdienė R, Leinsalu M, Martikainen PT, et al. Changing social inequalities in smoking, obesity and cause-specific mortality: Cross-national comparisons using compass typology. Plos One. 2020; 15(7):e0232971. [DOI:10.1371/journal.pone.0232971] [PMID] [PMCID] [DOI:10.1371/journal.pone.0232971]
3. Gasparotto AS, Borges DO, Sassi MG, Milani A, Rech DL, Terres M, et al. Differential expression of miRNAs related to angiogenesis and adipogenesis in subcutaneous fat of obese and nonobese women. Mol Biol Rep. 2019; 46(1):965-73. [DOI:10.1007/s11033-018-4553-5] [PMID] [DOI:10.1007/s11033-018-4553-5]
4. Abedpoor N, Taghian F, Hajibabaie F. Physical activity ameliorates the function of organs via adipose tissue in metabolic diseases. Acta Histochem. 2022; 124(2):151844. [DOI:10.1016/j.acthis.2022.151844] [PMID] [DOI:10.1016/j.acthis.2022.151844]
5. Deng Y, Scherer PE. Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann N Y Acad Sci. 2010; 1212:E1-19. [DOI:10.1111/j.1749-6632.2010.05875.x] [PMID] [PMCID] [DOI:10.1111/j.1749-6632.2010.05875.x]
6. Faber D, De Groot PG, Visseren F. Role of adipose tissue in haemostasis, coagulation and fibrinolysis. Obes Rev. 2009; 10(5):554-63. [DOI:10.1111/j.1467-789X.2009.00593.x] [PMID] [DOI:10.1111/j.1467-789X.2009.00593.x]
7. Conway EM, Collen D, Carmeliet P. Molecular mechanisms of blood vessel growth. Cardiovasc Res. 2001; 49(3):507-21. [DOI:10.1016/S0008-6363(00)00281-9] [PMID] [DOI:10.1016/S0008-6363(00)00281-9]
8. Karamysheva A. Mechanisms of angiogenesis. Biochemistry. 2008; 73(7):751-62. [DOI:10.1134/S0006297908070031] [PMID] [DOI:10.1134/S0006297908070031]
9. Brakenhielm E, Cao Y. Angiogenesis in adipose tissue. In: Yang K, editor. Adipose tissue protocols. Totowa: Humana Press; 2008. [DOI:10.1007/978-1-59745-245-8_5] [DOI:10.1007/978-1-59745-245-8_5]
10. Lijnen HR. Angiogenesis and obesity. Cardiovasc Res. 2008; 78(2):286-93. [DOI:10.1093/cvr/cvm007] [PMID] [DOI:10.1093/cvr/cvm007]
11. Gealekman O, Guseva N, Hartigan C, Apotheker S, Gorgoglione M, Gurav K, et al. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation. 2011; 123(2):186-94. [DOI:10.1161/CIRCULATIONAHA.110.970145] [PMID] [PMCID] [DOI:10.1161/CIRCULATIONAHA.110.970145]
12. Sun K, Asterholm IW, Kusminski CM, Bueno AC, Wang ZV, Pollard JW, et al. Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proc Natl Acad Sci USA. 2012; 109(15):5874-9. [DOI:10.1073/pnas.1200447109] [PMID] [PMCID] [DOI:10.1073/pnas.1200447109]
13. Disanzo BL, You T. Effects of exercise training on indicators of adipose tissue angiogenesis and hypoxia in obese rats. Metabolism. 2014; 63(4):452-5. [DOI:10.1016/j.metabol.2013.12.004] [PMID] [DOI:10.1016/j.metabol.2013.12.004]
14. Molla Hf, Bizheh N, Moazami M, Nourshahi M. [The effects of eight weeks aerobic training on angiogenes factor and body composition in overweight women (Persian)]. Physiol Sport Phys Act. 2016; 9(2):1365-74. [Link]
15. Van Pelt DW, Guth LM, Horowitz JF. Aerobic exercise elevates markers of angiogenesis and macrophage IL-6 gene expression in the subcutaneous adipose tissue of overweight-to-obese adults. J Appl Physiol (1985). 2017; 123(5):1150-9. [DOI:10.1152/japplphysiol.00614.2017] [PMID] [PMCID] [DOI:10.1152/japplphysiol.00614.2017]
16. Sun LL, Li WD, Lei FR, Li XQ. The regulatory role of micro RNA s in angiogenesis‐related diseases. J Cell Mol Med. 2018; 22(10):4568-87. [DOI:10.1111/jcmm.13700] [PMID] [PMCID] [DOI:10.1111/jcmm.13700]
17. Thamotharan S, Chu A, Kempf K, Janzen C, Grogan T, Elashoff DA, et al. Differential microRNA expression in human placentas of term intra-uterine growth restriction that regulates target genes mediating angiogenesis and amino acid transport. Plos One. 2017; 12(5):e0176493. [DOI:10.1371/journal.pone.0176493] [PMID] [PMCID] [DOI:10.1371/journal.pone.0176493]
18. Lucas T, Schäfer F, Müller P, Eming SA, Heckel A, Dimmeler S. Light-inducible antimiR-92a as a therapeutic strategy to promote skin repair in healing-impaired diabetic mice. Nat Commun. 2017; 8:15162. [DOI:10.1038/ncomms15162] [PMID] [PMCID] [DOI:10.1038/ncomms15162]
19. Suárez Y, Fernández-Hernando C, Pober JS, Sessa WC. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res. 2007; 100(8):1164-73. [DOI:10.1161/01.RES.0000265065.26744.17] [PMID] [DOI:10.1161/01.RES.0000265065.26744.17]
20. Chen H, Li L, Wang S, Lei Y, Ge Q, Lv N, et al. Reduced miR-126 expression facilitates angiogenesis of gastric cancer through its regulation on VEGF-A. Oncotarget. 2014; 5(23):11873. [DOI:10.18632/oncotarget.2662] [PMID] [PMCID] [DOI:10.18632/oncotarget.2662]
21. Celic T, Metzinger-Le Meuth V, Six I, Massy ZA, Metzinger L. The mir-221/222 cluster is a key player in vascular biology via the fine-tuning of endothelial cell physiology. Curr Vasc Pharmacol. 2017; 15(1):40-6. [DOI:10.2174/1570161114666160914175149] [PMID] [DOI:10.2174/1570161114666160914175149]
22. Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res. 2008; 79(4):581-8. [DOI:10.1093/cvr/cvn156] [PMID] [DOI:10.1093/cvr/cvn156]
23. Dentelli P, Rosso A, Orso F, Olgasi C, Taverna D, Brizzi MF. microRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression. Arterioscler Thromb Vasc Biol. 2010; 30(8):1562-8. [DOI:10.1161/ATVBAHA.110.206201] [PMID] [DOI:10.1161/ATVBAHA.110.206201]
24. Wang P, Luo Y, Duan H, Xing S, Zhang J, Lu D, et al. MicroRNA 329 suppresses angiogenesis by targeting CD146. Mol Cell Biol. 2013; 33(18):3689-99. [DOI:10.1128/MCB.00343-13] [PMID] [PMCID] [DOI:10.1128/MCB.00343-13]
25. Fathi R, Ebrahimi M, Khenar Sanami S. [Effects of high fat diet and high intensity aerobic training on interleukin 6 plasma levels in rats (Persian)]. Pathobiol Res. 2015; 18(3):109-16. [Link]
26. Khadivi Borujeny A, Marandi M, Haghjooy Javanmard S, Rajabi H, Khadivi Borujeny Z, Khorshidi Behzadi M. [Effect of eight weeks of resistance training on some signaling factors affecting on the satellite cells in Wistar rats (Persian)]. J Isfahan Med Sch. 2012; 30(207):1500-11. [Link]
27. Banitalebi E, Gharakhanlou R, Ghatreh Samani K, Amoli M, Teimori H. [The effect of resistance training on plasma and skeletal muscles sphingosine-1-phosphate levels of male Wistar rat (Persian)]. J Shahrekord Univ Med Sci. 2012; 14(1):1-10. [Link]
28. Schmitz B, Rolfes F, Schelleckes K, Mewes M, Thorwesten L, Krüger M, et al. Longer work/rest intervals during high-intensity interval training (HIIT) lead to elevated levels of miR-222 and miR-29c. Front Physiol. 2018; 9:395. [DOI:10.3389/fphys.2018.00395] [PMID] [PMCID] [DOI:10.3389/fphys.2018.00395]
29. Liu X, Xiao J, Zhu H, Wei X, Platt C, Damilano F, et al. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab. 2015; 21(4):584-95. [DOI:10.1016/j.cmet.2015.02.014] [PMID] [PMCID] [DOI:10.1016/j.cmet.2015.02.014]
30. Fernandes T, Casaes L, Soci U, Silveira A, Gomes J, Barretti D, et al. Exercise training restores the cardiac microRNA-16 levels preventing microvascular rarefaction in obese Zucker rats. Obes Facts. 2018; 11(1):15-24. [DOI:10.1159/000454835] [PMID] [PMCID] [DOI:10.1159/000454835]
31. Li Y, Yao M, Zhou Q, Cheng Y, Che L, Xu J. Dynamic regulation of circulating microRNAs during acute exercise and long-term exercise training in basketball athletes. Front Physiol. 2018; 9:282. [DOI:10.3389/fphys.2018.00282] [PMID] [PMCID] [DOI:10.3389/fphys.2018.00282]
32. Fasanaro P, D'Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem. 2008; 283(23):15878-83. [DOI:10.1074/jbc.M800731200] [PMID] [PMCID] [DOI:10.1074/jbc.M800731200]
33. Zaccagnini G, Maimone B, Di Stefano V, Fasanaro P, Greco S, Perfetti A, et al. Hypoxia-induced miR-210 modulates tissue response to acute peripheral ischemia. Antioxid Redox Signal. 2014; 21(8):1177-88. [DOI:10.1089/ars.2013.5206] [PMID] [PMCID] [DOI:10.1089/ars.2013.5206]
34. Chan SY, Zhang YY, Hemann C, Mahoney CE, Zweier JL, Loscalzo J. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab. 2009; 10(4):273-84. [DOI:10.1016/j.cmet.2009.08.015] [PMID] [PMCID] [DOI:10.1016/j.cmet.2009.08.015]
35. Alaiti MA, Ishikawa M, Masuda H, Simon DI, Jain MK, Asahara T, et al. Up‐regulation of miR‐210 by vascular endothelial growth factor in ex vivo expanded CD 34+ cells enhances cell‐mediated angiogenesis. J Cell Mol Med. 2012; 16(10):2413-21. [DOI:10.1111/j.1582-4934.2012.01557.x] [PMID] [PMCID] [DOI:10.1111/j.1582-4934.2012.01557.x]
36. Sheedy FJ. Turning 21: Induction of miR-21 as a key switch in the inflammatory response. Front Immunol. 2015; 6:19. [DOI:10.3389/fimmu.2015.00019] [PMID] [PMCID] [DOI:10.3389/fimmu.2015.00019]
37. Corsten MF, Heggermont W, Papageorgiou AP, Deckx S, Tijsma A, Verhesen W, et al. The microRNA-221/-222 cluster balances the antiviral and inflammatory response in viral myocarditis. Eur Heart J. 2015; 36(42):2909-19. [DOI:10.1093/eurheartj/ehv321] [PMID] [DOI:10.1093/eurheartj/ehv321]
38. Cheng HS, Sivachandran N, Lau A, Boudreau E, Zhao JL, Baltimore D, et al. Micro RNA‐146 represses endothelial activation by inhibiting pro‐inflammatory pathways. EMBO Mol Med. 2013; 5(7):1017-34. [DOI:10.1002/emmm.201202318] [PMID] [PMCID] [DOI:10.1002/emmm.201202318]
39. Yang L, Boldin MP, Yu Y, Liu CS, Ea C-K, Ramakrishnan P, et al. miR-146a controls the resolution of T cell responses in mice. J Exp Med. 2012; 209(9):1655-70. [DOI:10.1084/jem.20112218] [PMID] [PMCID] [DOI:10.1084/jem.20112218]
40. Cui S, Sun B, Yin X, Guo X, Chao D, Zhang C, et al. Time-course responses of circulating microRNAs to three resistance training protocols in healthy young men. Sci Rep. 2017; 7(1):1-13. [DOI:10.1038/s41598-017-02294-y] [PMID] [PMCID] [DOI:10.1038/s41598-017-02294-y]
41. Akbarpour M, Fathollahi Shoorabeh F, Moradpoorian M, Hamidi M. [Investigation of some microRNAs related to cell death to eight-week resistance training in women with breast cancer (Persian)]. J Fasa Univ Medi Sci. 2020; 10(1):2043-52. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Vessels and Circulation

Designed & Developed by : Yektaweb