1. Brixius K, Schoenberger S, Ladage D, Knigge H, Falkowski G, Hellmich M, et al. Long-term endurance exercise decreases antiangiogenic endostatin signalling in overweight men aged 50-60 years. Br J Sports Med. 2008; 42(2):126-9. [DOI:10.1136/bjsm.2007.035188] [PMID] [
DOI:10.1136/bjsm.2007.035188]
2. Teng A, Blakely T, Atkinson J, Kalėdienė R, Leinsalu M, Martikainen PT, et al. Changing social inequalities in smoking, obesity and cause-specific mortality: Cross-national comparisons using compass typology. Plos One. 2020; 15(7):e0232971. [DOI:10.1371/journal.pone.0232971] [PMID] [PMCID] [
DOI:10.1371/journal.pone.0232971]
3. Gasparotto AS, Borges DO, Sassi MG, Milani A, Rech DL, Terres M, et al. Differential expression of miRNAs related to angiogenesis and adipogenesis in subcutaneous fat of obese and nonobese women. Mol Biol Rep. 2019; 46(1):965-73. [DOI:10.1007/s11033-018-4553-5] [PMID] [
DOI:10.1007/s11033-018-4553-5]
4. Abedpoor N, Taghian F, Hajibabaie F. Physical activity ameliorates the function of organs via adipose tissue in metabolic diseases. Acta Histochem. 2022; 124(2):151844. [DOI:10.1016/j.acthis.2022.151844] [PMID] [
DOI:10.1016/j.acthis.2022.151844]
5. Deng Y, Scherer PE. Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann N Y Acad Sci. 2010; 1212:E1-19. [DOI:10.1111/j.1749-6632.2010.05875.x] [PMID] [PMCID] [
DOI:10.1111/j.1749-6632.2010.05875.x]
6. Faber D, De Groot PG, Visseren F. Role of adipose tissue in haemostasis, coagulation and fibrinolysis. Obes Rev. 2009; 10(5):554-63. [DOI:10.1111/j.1467-789X.2009.00593.x] [PMID] [
DOI:10.1111/j.1467-789X.2009.00593.x]
7. Conway EM, Collen D, Carmeliet P. Molecular mechanisms of blood vessel growth. Cardiovasc Res. 2001; 49(3):507-21. [DOI:10.1016/S0008-6363(00)00281-9] [PMID] [
DOI:10.1016/S0008-6363(00)00281-9]
8. Karamysheva A. Mechanisms of angiogenesis. Biochemistry. 2008; 73(7):751-62. [DOI:10.1134/S0006297908070031] [PMID] [
DOI:10.1134/S0006297908070031]
9. Brakenhielm E, Cao Y. Angiogenesis in adipose tissue. In: Yang K, editor. Adipose tissue protocols. Totowa: Humana Press; 2008. [DOI:10.1007/978-1-59745-245-8_5] [
DOI:10.1007/978-1-59745-245-8_5]
10. Lijnen HR. Angiogenesis and obesity. Cardiovasc Res. 2008; 78(2):286-93. [DOI:10.1093/cvr/cvm007] [PMID] [
DOI:10.1093/cvr/cvm007]
11. Gealekman O, Guseva N, Hartigan C, Apotheker S, Gorgoglione M, Gurav K, et al. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation. 2011; 123(2):186-94. [DOI:10.1161/CIRCULATIONAHA.110.970145] [PMID] [PMCID] [
DOI:10.1161/CIRCULATIONAHA.110.970145]
12. Sun K, Asterholm IW, Kusminski CM, Bueno AC, Wang ZV, Pollard JW, et al. Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proc Natl Acad Sci USA. 2012; 109(15):5874-9. [DOI:10.1073/pnas.1200447109] [PMID] [PMCID] [
DOI:10.1073/pnas.1200447109]
13. Disanzo BL, You T. Effects of exercise training on indicators of adipose tissue angiogenesis and hypoxia in obese rats. Metabolism. 2014; 63(4):452-5. [DOI:10.1016/j.metabol.2013.12.004] [PMID] [
DOI:10.1016/j.metabol.2013.12.004]
14. Molla Hf, Bizheh N, Moazami M, Nourshahi M. [The effects of eight weeks aerobic training on angiogenes factor and body composition in overweight women (Persian)]. Physiol Sport Phys Act. 2016; 9(2):1365-74. [Link]
15. Van Pelt DW, Guth LM, Horowitz JF. Aerobic exercise elevates markers of angiogenesis and macrophage IL-6 gene expression in the subcutaneous adipose tissue of overweight-to-obese adults. J Appl Physiol (1985). 2017; 123(5):1150-9. [DOI:10.1152/japplphysiol.00614.2017] [PMID] [PMCID] [
DOI:10.1152/japplphysiol.00614.2017]
16. Sun LL, Li WD, Lei FR, Li XQ. The regulatory role of micro RNA s in angiogenesis‐related diseases. J Cell Mol Med. 2018; 22(10):4568-87. [DOI:10.1111/jcmm.13700] [PMID] [PMCID] [
DOI:10.1111/jcmm.13700]
17. Thamotharan S, Chu A, Kempf K, Janzen C, Grogan T, Elashoff DA, et al. Differential microRNA expression in human placentas of term intra-uterine growth restriction that regulates target genes mediating angiogenesis and amino acid transport. Plos One. 2017; 12(5):e0176493. [DOI:10.1371/journal.pone.0176493] [PMID] [PMCID] [
DOI:10.1371/journal.pone.0176493]
18. Lucas T, Schäfer F, Müller P, Eming SA, Heckel A, Dimmeler S. Light-inducible antimiR-92a as a therapeutic strategy to promote skin repair in healing-impaired diabetic mice. Nat Commun. 2017; 8:15162. [DOI:10.1038/ncomms15162] [PMID] [PMCID] [
DOI:10.1038/ncomms15162]
19. Suárez Y, Fernández-Hernando C, Pober JS, Sessa WC. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res. 2007; 100(8):1164-73. [DOI:10.1161/01.RES.0000265065.26744.17] [PMID] [
DOI:10.1161/01.RES.0000265065.26744.17]
20. Chen H, Li L, Wang S, Lei Y, Ge Q, Lv N, et al. Reduced miR-126 expression facilitates angiogenesis of gastric cancer through its regulation on VEGF-A. Oncotarget. 2014; 5(23):11873. [DOI:10.18632/oncotarget.2662] [PMID] [PMCID] [
DOI:10.18632/oncotarget.2662]
21. Celic T, Metzinger-Le Meuth V, Six I, Massy ZA, Metzinger L. The mir-221/222 cluster is a key player in vascular biology via the fine-tuning of endothelial cell physiology. Curr Vasc Pharmacol. 2017; 15(1):40-6. [DOI:10.2174/1570161114666160914175149] [PMID] [
DOI:10.2174/1570161114666160914175149]
22. Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res. 2008; 79(4):581-8. [DOI:10.1093/cvr/cvn156] [PMID] [
DOI:10.1093/cvr/cvn156]
23. Dentelli P, Rosso A, Orso F, Olgasi C, Taverna D, Brizzi MF. microRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression. Arterioscler Thromb Vasc Biol. 2010; 30(8):1562-8. [DOI:10.1161/ATVBAHA.110.206201] [PMID] [
DOI:10.1161/ATVBAHA.110.206201]
24. Wang P, Luo Y, Duan H, Xing S, Zhang J, Lu D, et al. MicroRNA 329 suppresses angiogenesis by targeting CD146. Mol Cell Biol. 2013; 33(18):3689-99. [DOI:10.1128/MCB.00343-13] [PMID] [PMCID] [
DOI:10.1128/MCB.00343-13]
25. Fathi R, Ebrahimi M, Khenar Sanami S. [Effects of high fat diet and high intensity aerobic training on interleukin 6 plasma levels in rats (Persian)]. Pathobiol Res. 2015; 18(3):109-16. [Link]
26. Khadivi Borujeny A, Marandi M, Haghjooy Javanmard S, Rajabi H, Khadivi Borujeny Z, Khorshidi Behzadi M. [Effect of eight weeks of resistance training on some signaling factors affecting on the satellite cells in Wistar rats (Persian)]. J Isfahan Med Sch. 2012; 30(207):1500-11. [Link]
27. Banitalebi E, Gharakhanlou R, Ghatreh Samani K, Amoli M, Teimori H. [The effect of resistance training on plasma and skeletal muscles sphingosine-1-phosphate levels of male Wistar rat (Persian)]. J Shahrekord Univ Med Sci. 2012; 14(1):1-10. [Link]
28. Schmitz B, Rolfes F, Schelleckes K, Mewes M, Thorwesten L, Krüger M, et al. Longer work/rest intervals during high-intensity interval training (HIIT) lead to elevated levels of miR-222 and miR-29c. Front Physiol. 2018; 9:395. [DOI:10.3389/fphys.2018.00395] [PMID] [PMCID] [
DOI:10.3389/fphys.2018.00395]
29. Liu X, Xiao J, Zhu H, Wei X, Platt C, Damilano F, et al. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab. 2015; 21(4):584-95. [DOI:10.1016/j.cmet.2015.02.014] [PMID] [PMCID] [
DOI:10.1016/j.cmet.2015.02.014]
30. Fernandes T, Casaes L, Soci U, Silveira A, Gomes J, Barretti D, et al. Exercise training restores the cardiac microRNA-16 levels preventing microvascular rarefaction in obese Zucker rats. Obes Facts. 2018; 11(1):15-24. [DOI:10.1159/000454835] [PMID] [PMCID] [
DOI:10.1159/000454835]
31. Li Y, Yao M, Zhou Q, Cheng Y, Che L, Xu J. Dynamic regulation of circulating microRNAs during acute exercise and long-term exercise training in basketball athletes. Front Physiol. 2018; 9:282. [DOI:10.3389/fphys.2018.00282] [PMID] [PMCID] [
DOI:10.3389/fphys.2018.00282]
32. Fasanaro P, D'Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem. 2008; 283(23):15878-83. [DOI:10.1074/jbc.M800731200] [PMID] [PMCID] [
DOI:10.1074/jbc.M800731200]
33. Zaccagnini G, Maimone B, Di Stefano V, Fasanaro P, Greco S, Perfetti A, et al. Hypoxia-induced miR-210 modulates tissue response to acute peripheral ischemia. Antioxid Redox Signal. 2014; 21(8):1177-88. [DOI:10.1089/ars.2013.5206] [PMID] [PMCID] [
DOI:10.1089/ars.2013.5206]
34. Chan SY, Zhang YY, Hemann C, Mahoney CE, Zweier JL, Loscalzo J. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab. 2009; 10(4):273-84. [DOI:10.1016/j.cmet.2009.08.015] [PMID] [PMCID] [
DOI:10.1016/j.cmet.2009.08.015]
35. Alaiti MA, Ishikawa M, Masuda H, Simon DI, Jain MK, Asahara T, et al. Up‐regulation of miR‐210 by vascular endothelial growth factor in ex vivo expanded CD 34+ cells enhances cell‐mediated angiogenesis. J Cell Mol Med. 2012; 16(10):2413-21. [DOI:10.1111/j.1582-4934.2012.01557.x] [PMID] [PMCID] [
DOI:10.1111/j.1582-4934.2012.01557.x]
36. Sheedy FJ. Turning 21: Induction of miR-21 as a key switch in the inflammatory response. Front Immunol. 2015; 6:19. [DOI:10.3389/fimmu.2015.00019] [PMID] [PMCID] [
DOI:10.3389/fimmu.2015.00019]
37. Corsten MF, Heggermont W, Papageorgiou AP, Deckx S, Tijsma A, Verhesen W, et al. The microRNA-221/-222 cluster balances the antiviral and inflammatory response in viral myocarditis. Eur Heart J. 2015; 36(42):2909-19. [DOI:10.1093/eurheartj/ehv321] [PMID] [
DOI:10.1093/eurheartj/ehv321]
38. Cheng HS, Sivachandran N, Lau A, Boudreau E, Zhao JL, Baltimore D, et al. Micro RNA‐146 represses endothelial activation by inhibiting pro‐inflammatory pathways. EMBO Mol Med. 2013; 5(7):1017-34. [DOI:10.1002/emmm.201202318] [PMID] [PMCID] [
DOI:10.1002/emmm.201202318]
39. Yang L, Boldin MP, Yu Y, Liu CS, Ea C-K, Ramakrishnan P, et al. miR-146a controls the resolution of T cell responses in mice. J Exp Med. 2012; 209(9):1655-70. [DOI:10.1084/jem.20112218] [PMID] [PMCID] [
DOI:10.1084/jem.20112218]
40. Cui S, Sun B, Yin X, Guo X, Chao D, Zhang C, et al. Time-course responses of circulating microRNAs to three resistance training protocols in healthy young men. Sci Rep. 2017; 7(1):1-13. [DOI:10.1038/s41598-017-02294-y] [PMID] [PMCID] [
DOI:10.1038/s41598-017-02294-y]
41. Akbarpour M, Fathollahi Shoorabeh F, Moradpoorian M, Hamidi M. [Investigation of some microRNAs related to cell death to eight-week resistance training in women with breast cancer (Persian)]. J Fasa Univ Medi Sci. 2020; 10(1):2043-52. [Link]