Volume 2, Issue 4 (Autumn 2021)                   J Vessel Circ 2021, 2(4): 187-194 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghassemifard L, Khavasi N, Hejazi S A, Bahrami M, Hosseini M, Najjari S, et al . Pre-nutritional Effects of Hot (Cinnamon) and Cold (Lentil) Temperaments on the Animal Model of Stroke. J Vessel Circ 2021; 2 (4) :187-194
URL: http://jvessels.muq.ac.ir/article-1-111-en.html
1- Department of Physiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
2- Department of Iranian Traditional Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
3- Neuroscience Research Center, Qom University of Medical Sciences, Qom, Iran.
4- Department of Iranian Traditional Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
5- Neuroscience Research Center, Qom University of Medical Sciences, Qom, Iran
Abstract:   (1409 Views)
Background and Aim: Stroke, mainly caused by atherosclerosis, is the second leading cause of death worldwide. Atherosclerosis may be caused by spleen dysfunction, and oxidative stress intensifies the brain damage induced by cerebral ischemia. According to the studies, cinnamon and lentils as hot and cold temperaments, respectively, contain antioxidant compounds and affect spleen function. This study investigated and compared the effect of cinnamon and lentils in preventing stroke.
Materials and Methods: Cinnamon and lentil extracts were injected intraperitoneally daily to adult male Wistar rats for 30 days, and at the end, a rotarod test was carried out. Then, blood samples were taken from their eyes. The rats were submitted to the ischemic stroke, and the activity level of Catalase (CAT), Superoxide Dismutase (SOD), and total antioxidant were measured. The ischemic stroke model was implemented using the MCAO method. Infarct area and ischemic tolerance were measured by the MCAO (Middle Cerebral Artery Occlusion) method, and infarct volume was assessed by 2,3,5-triphenyl tetrazolium chloride.
Results: Chronic use of lentil extract decreased motor function, CAT, SOD, and total antioxidant activity compared with cinnamon extract. The cinnamon extract improved the ischemic tolerance and reduced the infarct size. The group receiving lentil extract could not tolerate ischemia and died during the experiment.
Conclusion: It seems that diet adjustment can effectively reduce the incidence of stroke or its complications. Awareness of food temperament and its relationship with various diseases can reduce disease burden, though further studies should be conducted on this topic.
Full-Text [PDF 1365 kb]   (252 Downloads) |   |   Full-Text (HTML)  (286 Views)  
Type of Study: Review | Subject: vascular neurological diseases
Received: 2020/07/28 | Accepted: 2020/12/31 | Published: 2021/03/30

References
1. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation. 2020; 141(9):e139-e596. [DOI:10.1161/CIR.0000000000000757] [PMID] [DOI:10.1161/CIR.0000000000000757]
2. Aghamiri H, Paybast S, Safarpour Lima B, Mansoori M. New advances in acute ischemic stroke management: Review article. Int Clin Neurosci J. 2020; 7(2):55-60. [DOI:10.34172/icnj.2020.02] [DOI:10.34172/icnj.2020.02]
3. Sangal A. Role of cinnamon as beneficial antidiabeticfood adjunct: A review. Advances in Applied Science Research. 2011; 2(4):440-50. [Link]
4. Vangalapati, Vangalapati M, Satya S, S. Prakash, Avanigadda S, N Kiran Sree, et al. A review on pharmacological activities and clinical effects of cinnamon species. Res J Pharm Biol Chem Sci. 2012; 3(1):653-63. [Link]
5. Shalaby MA, Saifan HY. Some pharmacological effects of cinnamon and ginger herbs in obese diabetic rats. J Intercult Ethnopharmacol. 2014; 3(4):144-9. [DOI:10.5455/jice.20140818050741] [PMID] [PMCID] [DOI:10.5455/jice.20140818050741]
6. Pradeep H, Diya JB, Shashikumar S, Rajanikant GK. Oxidative stress: Assassin behind the ischemic stroke. Folia Neuropathol. 2012; 50(3):219-30. [DOI:10.5114/fn.2012.30522] [PMID] [DOI:10.5114/fn.2012.30522]
7. Wang JJ, Cui P. Neohesperidin attenuates cerebral ischemia-reperfusion injury via inhibiting the apoptotic pathway and activating the Akt/Nrf2/HO-1 pathway. J Asian Nat Prod Res. 2013; 15(9):1023-37. [DOI:10.1080/10286020.2013.827176] [PMID] [DOI:10.1080/10286020.2013.827176]
8. Amarowicz RP. M, Honke J, Rudnicka B, Troszyńska A, Kozłowska H. Extraction of phenolic compounds from lentil seeds (Lens culinaris) with various solvents. Pol J Food Nutr. 1995; 4:53-62. Pol J Food Nutr. 1995; 4:53-62. [Link]
9. Amarowicz R, Estrella I, Hernández T, Robredo R, Troszyńska A, Kosińska A, et al. Free-radical scavenging capacity, antioxidant activity, and phenolic composition of green lentil (Lens culinaris). Food Chem. 2010; 121(3):705-11. [DOI:10.1016/j.foodchem.2010.01.009] [DOI:10.1016/j.foodchem.2010.01.009]
10. Fernandez-Orozco R, Zieliński H, Piskuła MK. Contribution of low-molecular-weight antioxidants to the antioxidant capacity of raw and processed lentil seeds. Nahrung. 2003; 47(5):291-9. [DOI:10.1002/food.200390069] [PMID] [DOI:10.1002/food.200390069]
11. Koleckar V, Kubikova K, Rehakova Z, Kuca K, Jun D, Jahodar L, et al. Condensed and hydrolysable tannins as antioxidants influencing the health. Mini Rev Med Chem. Mini Rev Med Chem. 2008; 8(5):436-47. [DOI:10.2174/138955708784223486] [PMID] [DOI:10.2174/138955708784223486]
12. Constantine N, Giannopolitis CN, Ries SK. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 1977; 59(2):309-14. [DOI:10.1104/pp.59.2.309] [DOI:10.1104/pp.59.2.309]
13. Aebi H. Catalase in vitro. Methods Enzymol. 1983; 105:21-6. [DOI:10.1016/S0076-6879(84)05016-3] [DOI:10.1016/S0076-6879(84)05016-3]
14. Benzie IFF, Strain JJ. The ferric reducing ability of plasma as a measure of 'antioxidant power': The FRAP assay. Anal Biochem. 1996; 239:70-6. [DOI:10.1006/abio.1996.0292] [PMID] [DOI:10.1006/abio.1996.0292]
15. Gholamzadeh R, Eskandari M, Bigdeli MR, Mostafavi H. Erythropoietin pretreatment effect on blood glucose and its relationship with inflammatory factors after brain ischemic-reperfusion injury in rats. Basic Clin Neurosci. 2018; 9(5):347-56. [DOI:10.32598/bcn.9.5.347] [PMID] [PMCID] [DOI:10.32598/bcn.9.5.347]
16. Houshmand G, Tarahomi S, Arzi A, Goudarzi M, Bahadoram M, Rashidi-Nooshabadi M. Red Lentil extract: Neuroprotective effects on perphenazine induced catatonia in rats. J Clin Diagn Res. 2016; 10(6):FF05-FF8. [DOI:10.7860/JCDR/2016/17813.7977] [PMID] [PMCID] [DOI:10.7860/JCDR/2016/17813.7977]
17. Wu M.-Y, Yiang G.-T, Liao W.-T, Tsai A.P.-Y, Cheng Y.-L, Cheng P.-W, et al. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem. 2018; 46(4):1650-67. [DOI:10.1159/000489241] [PMID] [DOI:10.1159/000489241]
18. Sánchez-Hernández CD, Torres-Alarcón LA, González-Cortés A, Peón AN. Ischemia/Reperfusion injury: Pathophysiology, current clinical management, and potential preventive approaches. Mediators Inflamm. 2020; 8405370-2020. [DOI:10.1155/2020/8405370] [PMID] [PMCID] [DOI:10.1155/2020/8405370]
19. Ahmad S, Elsherbiny NM, Haque R, Badruzzaman Khan M, Ishrat T, Shah ZA, et al. Sesamin attenuates neurotoxicity in mouse model of ischemic brain stroke. Neurotoxicology. 2014; 45:100-10. [DOI:10.1016/j.neuro.2014.10.002] [PMID] [DOI:10.1016/j.neuro.2014.10.002]
20. Dadmehr M, Latifi SA, Bahrami M. The effect of spleen in atherosclerosis in viewpoint of Avicenna. Int J Cardiol. 2018; 268:246. [DOI:10.1016/j.ijcard.2018.03.072] [PMID] [DOI:10.1016/j.ijcard.2018.03.072]
21. Choopani R, Mosaddegh M, Gir AA, Emtiazy M. Avicenna (Ibn Sina) aspect of atherosclerosis. Int J Cardiol. 2012; 156(3):330. [DOI:10.1016/j.ijcard.2012.01.094] [PMID] [DOI:10.1016/j.ijcard.2012.01.094]
22. Muhammad DRA, Gonzalez CG, Sedaghat Doost A, Van de Walle D, Van der Meeren P, Dewettinck K. Improvement of antioxidant activity and physical stability of chocolate beverage using colloidal cinnamon nanoparticles. Food Bioprocess Technol. 2019; 12(6):976-89. [DOI:10.1007/s11947-019-02271-5] [DOI:10.1007/s11947-019-02271-5]
23. Alqirnawdi MAA, Khotimah H, Santosa S, Mintaroem K. The effect of cinnamon to the expression of SOD-1 and TNF-α in indomethacin-induced gastric ulcer rat. AIP Conference Proceedings. 2020; 2231:030008. [DOI:10.1063/5.0007560] [DOI:10.1063/5.0007560]
24. Muhammad DRA, Praseptiangga D, Van de Walle D, Dewettinck K. Interaction between natural antioxidants derived from cinnamon and cocoa in binary and complex mixtures. Food Chem. 2017; 231:356-64. [DOI:10.1016/j.foodchem.2017.03.128] [PMID] [DOI:10.1016/j.foodchem.2017.03.128]
25. Panickar KS, Polansky MM, Anderson RA. Cinnamon polyphenols attenuate cell swelling and mitochondrial dysfunction following oxygen-glucose deprivation in glial cells. Exp Neurol. 2009; 216(2):420-7. [DOI:10.1016/j.expneurol.2008.12.024] [PMID] [DOI:10.1016/j.expneurol.2008.12.024]
26. Tressera-Rimbau A, Arranz S, Eder M, Vallverdú-Queralt A. Dietary polyphenols in the prevention of stroke. Oxid Med Cell Longev. 2017; 2017:7467962. [DOI:10.1155/2017/7467962] [PMID] [PMCID] [DOI:10.1155/2017/7467962]
27. Qusti S, El Rabey HA, Balashram SA. The hypoglycemic and antioxidant activity of cress seed and cinnamon on streptozotocin induced diabetes in male rats. Evid Based Complement Alternat Med. 2016; 2016:5614564. [DOI:10.1155/2016/5614564] [PMID] [PMCID] [DOI:10.1155/2016/5614564]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Vessels and Circulation

Designed & Developed by : Yektaweb