Volume 1, Issue 4 (Autumn 2020)                   J Vessel Circ 2020, 1(4): 13-20 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nikbakht V, Asadi Golzar M, Kazemi A, Khaledi N, Hagebrahimi Z. Effect of Endurance Training Under Microgravity Condition on Vascular Endothelial Growth Factor. J Vessel Circ 2020; 1 (4) :13-20
URL: http://jvessels.muq.ac.ir/article-1-60-en.html
1- Department of Exercise Physiology, Faculty of Physical Education and Sport Science, Kharazmi University, Tehran, Iran.
2- Department of Exercise Physiology, Faculty of Sport Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
Abstract:   (1157 Views)
Background and Aim: Exposure to microgravity conditions is associated with changes in the cardiovascular system. Physical activities are employed to reduce deleterious physiologic effects of long-duration microgravity exposure. The purpose of the current study was to evaluate the effect of endurance training on serum levels of Vascular Endothelial Growth Factor (VEGF) under simulated microgravity condition.
Materials and Methods: A total of 42 male Wistar rats were randomly selected and divided into five groups of SST (suspension and suspension training, n=10), SET (suspension and endurance training, n=6), S (suspension without training, n=10), ET (endurance training, n=6), and C (control, n=10). Serum VEGF levels were measured by ELISA kit before and after training. One-way ANOVA with a Bonferroni post hoc analysis was employed to test the research hypothesis.
Results: Our results showed that six weeks of endurance training in simulated microgravity increased serum VEGF levels in the SST group compared to the S and control groups (P≤0.001), while six weeks resting in simulated microgravity condition did not significantly affect serum levels of VEGF (P>0.999).
Conclusion: Endurance training in simulated microgravity could affect VEGF and angiogenesis. In addition, endurance training in simulated weightlessness condition could be effective in rehabilitating patients with cardiovascular diseases.
Full-Text [PDF 1205 kb]   (396 Downloads) |   |   Full-Text (HTML)  (522 Views)  
Type of Study: Research | Subject: vascular physiology
Received: 2020/02/27 | Accepted: 2020/04/12 | Published: 2020/10/1

References
1. [1] Oganov VS, Bogomolov VV. [Human bone system in microgravity: Review of research data, hypotheses and predictability of musculoskeletal system state in extended (exploration) missions (Russian)]. Aviakosm Ekolog Med. 2009; 43(1):3-12.[PMID]
2. [2] Otsuka K, Cornelissen G, Kubo Y, Hayashi M, Yamamoto N, Shibata K, et al. Erratum: Intrinsic cardiovascular autonomic regulatory system of astronauts exposed long-term to microgravity in space: Observational study. NPJ Microgravity. 2016;2:16037.[DOI:10.1038/npjmgrav.2016.37] [PMID] [PMCID] [DOI:10.1038/npjmgrav.2016.37]
3. [3] Chen Y, Xu Ch, Wang P, Cai Y, Ma H. Effect of long-term simulated microgravity on immune system and lung tissues in rhesus macaque. Inflammation. 2017; 40(2):589-600.[DOI:10.1007/s10753-016-0506-0] [PMID] [DOI:10.1007/s10753-016-0506-0]
4. [4] Tanaka K, Gotoh TM, Awazu Ch, Morita H. Roles of the vestibular system in controlling arterial pressure in conscious rats during a short period of microgravity. Neurosci Lett. 2006;397(1-2):40-3. [DOI:10.1016/j.neulet.2005.11.052] [PMID] [DOI:10.1016/j.neulet.2005.11.052]
5. [5] Espinosa-Jeffrey A, Nguyen K, Kumar Sh, Toshimasa O, Hirose R, Reue K, et al. Simulated microgravity enhances oligodendrocyte mitochondrial function and lipid metabolism. J Neurosci Res. 2016; 94(12):1434-50. [DOI:10.1002/jnr.23958][PMID] [PMCID] [DOI:10.1002/jnr.23958]
6. [6] Lawley JS, Petersen LG, Howden EJ, Sarma S, Cornwell WK, Zhang R, et al. Effect of gravity and microgravity on intracranial pressure. J Physiol. 2017; 595(6):2115-27. [DOI:10.1113/JP273557] [PMID] [PMCID] [DOI:10.1113/JP273557]
7. [7] Kramer A, Kümmel J, Mulder E, Gollhofer A, Frings-Meuthen P, Gruber M. High-intensity jump training is tolerated during 60 days of bed rest and is very effective in preserving leg power and lean body mass: An overview of the Cologne RSL Study. PloS One. 2017; 12(1):e0169793. [DOI:10.1371/journal.pone.0169793] [PMID] [PMCID] [DOI:10.1371/journal.pone.0169793]
8. [8] Shi F, Wang YCh, Hu ZB, Xu HY, Sun J, Gao Y, et al. Simulated microgravity promotes angiogenesis through RhoA-dependent rearrangement of the actin cytoskeleton. Cell Physiol Biochem. 2017; 41(1):227-38. [DOI:10.1159/000456060] [PMID] [DOI:10.1159/000456060]
9. [9] Roumen Ch, Blaak EE, Corpeleijn E. Lifestyle intervention for prevention of diabetes: Determinants of success for future implementation. Nutr Rev. 2009; 67(3):132-46. [DOI:10.1111/j.1753-4887.2009.00181.x] [PMID] [DOI:10.1111/j.1753-4887.2009.00181.x]
10. [10] Moayyeri AR. The association between physical activity and osteoporotic fractures: A review of the evidence and implications for future research. Ann Epidemiol. 2008; 18(11):827-35. [DOI:10.1016/j.annepidem.2008.08.007] [PMID] [DOI:10.1016/j.annepidem.2008.08.007]
11. [11] Teychenne M, Ball K, Salmon J. Physical activity and likelihood of depression in adults: A review. Prev Med. 2008; 46(5):397-411. [DOI:10.1016/j.ypmed.2008.01.009] [PMID] [DOI:10.1016/j.ypmed.2008.01.009]
12. [12] Wing RR, Hill JO. Successful weight loss maintenance. Annu Rev Nutr. 2001; 21:323-41. [DOI:10.1146/annurev.nutr.21.1.323] [PMID] [DOI:10.1146/annurev.nutr.21.1.323]
13. [13] Huang Ch, Lin YY, Yang AL, Kuo TW, Kuo CH, Lee SD. Anti-Renal Fibrotic Effect of Exercise Training in Hypertension. Int J Mol Sci. 2018; 19(2):613. [DOI:10.3390/ijms19020613] [PMID] [PMCID] [DOI:10.3390/ijms19020613]
14. [14] Friedenreich CM, Cust AE. Physical activity and breast cancer risk: Impact of timing, type and dose of activity and population subgroup effects. Br J Sports Med. 2008; 42(8):636-47.[DOI:10.1136/bjsm.2006.029132] [PMID] [DOI:10.1136/bjsm.2006.029132]
15. [15] Tardon A, Lee WJ, Delgado-Rodriguez M, Dosemeci M, Albanes D, Hoover R, et al. Leisure-time physical activity and lung cancer: A meta-analysis. Cancer Causes Control. 2005; 16(4):389-97. [DOI:10.1007/s10552-004-5026-9] [PMID] [PMCID] [DOI:10.1007/s10552-004-5026-9]
16. [16] Slattery ML, Potter JD. Physical activity and colon cancer: Confounding or interaction? Med Sci Sports Exerc. 2002; 34(6):913-9. [DOI:10.1097/00005768-200206000-00002] [PMID] [DOI:10.1097/00005768-200206000-00002]
17. [17] Leung FP, Yung LM, Laher I, Yao X, Chen ZY, Huang Y. Exercise, vascular wall and cardiovascular diseases: An update (part 1). Sports Med. 2008; 38(12):1009-24. [DOI:10.2165/00007256-200838120-00005] [PMID] [DOI:10.2165/00007256-200838120-00005]
18. [18] Winzer EB, Woitek F, Linke A. Physical activity in the prevention and treatment of coronary artery disease. J Am Heart Assoc. 2018; 7(4):e007725. [DOI:10.1161/JAHA.117.007725] [PMID] [PMCID] [DOI:10.1161/JAHA.117.007725]
19. [19] Wåhlin-Larsson B, Ulfberg J. Peripheral muscle changes. In: Manconi M, García-Borreguero D, editors. Restless Legs Syndrome/Willis Ekbom Disease. New York, NY: Springer; 2017. pp. 119-125. [DOI:10.1007/978-1-4939-6777-3_9] [DOI:10.1007/978-1-4939-6777-3_9]
20. [20] Shirali S, Barari AR, Hosseini SA, Khodadi E. Effects of six weeks endurance training and aloe vera supplementation on COX-2 and VEGF levels in mice with breast cancer. Asian Pac J Cancer Prev. 2017; 18(1):31-6. [DOI:10.22034/APJCP.2017.18.1.31] [PMID] [PMCID]
21. [21] Birot OJ, Koulmann N, Peinnequin A, Bigard XA. Exercise- induced expression of vascular endothelial growth factor mRNA in rat skeletal muscle is dependent on fibre type. J Physiol. 2003; 552(Pt 1):213-21. [DOI:10.1113/jphysiol.2003.043026] [PMID] [PMCID] [DOI:10.1113/jphysiol.2003.043026]
22. [22] Gustafsson T, Puntschart A, Kaijser L, Jansson E, Sundberg CJ. Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle. Am J Physiol. 1999; 276(2):H679-85. [DOI:10.1152/ ajpheart.1999.276.2.H679] [PMID] [DOI:10.1152/ajpheart.1999.276.2.H679]
23. [23] Herzog B, Pellet-Many C, Britton G, Hartzoulakis B, Zachary IC. VEGF binding to NRP1 is essential for VEGF stimulation of endothelial cell migration, complex formation between NRP1 and VEGFR2, and signaling via FAK Tyr407 phosphorylation. Mol Biol Cell. 2011; 22(15):2766-76. [DOI:10.1091/mbc.e09-12-1061] [PMID] [PMCID] [DOI:10.1091/mbc.e09-12-1061]
24. [24] Wang YC, Lu DY, Shi F, Zhang Sh, Yang CB, Wang B, et al. Clinorotation enhances autophagy in vascular endothelial cells. Biochem Cell Biol. 2013; 91(5):309-14. [DOI:10.1139/bcb-2013-0029] [PMID] [DOI:10.1139/bcb-2013-0029]
25. [25] Kang CY, Zou L, Yuan M, Wang Y, Li TZ, Zhang Y, et al. Impact of simulated microgravity on microvascular endothelial cell apoptosis. Eur J Appl Physiol. 2011; 111(9):2131-8. [DOI:10.1007/s00421-011-1844-0] [PMID] [DOI:10.1007/s00421-011-1844-0]
26. [26] Wang T, Chen H, Lv K, Ji G, Liang F, Zhang Y, et al. Activation of HIF-1α and its downstream targets in rat hippocampus after long-term simulated microgravity exposure. Biochem Biophys Res Commun. 2017; 485(3):591-7. [DOI:10.1016/j.bbrc.2016.12.078] [PMID] [DOI:10.1016/j.bbrc.2016.12.078]
27. [27] Ke Q, Costa M. Hypoxia-Inducible Factor-1 (HIF-1). Mol Pharmacol. 2006; 70(5):1469-80. [DOI:10.1124/mol.106.027029] [PMID] [DOI:10.1124/mol.106.027029]
28. [28] Patil Sh, Steklov N, Bugbee WD, Goldberg T, Colwell Jr CW, D'Lima DD. Anti-gravity treadmills are effective in reducing knee forces. J Orthop Res. 2013; 31(5):672-9. [DOI:10.1002/jor.22272] [PMID] [DOI:10.1002/jor.22272]
29. [29] National Health and Medical Research Council. Australian code for the care and use of animals for scientific purposes. Canberra: National Health & Medical Research Council; 2013. https://www.nhmrc.gov.au/about-us/publications/australian-code-care-and-use-animals-scientific-purposes
30. [30] Morey-Holton ER, Globus RK. Hindlimb unloading rodent model: Technical aspects. J Appl Physiol. 2002; 92(4):1367-77. [DOI:10.1152/japplphysiol.00969.2001] [PMID] [DOI:10.1152/japplphysiol.00969.2001]
31. [31] Fuentes TI, Appleby N, Raya M, Bailey L, Hasaniya N, Stodieck L, et al. Simulated microgravity exerts an age-dependent effect on the differentiation of cardiovascular progenitors isolated from the human heart. PloS One. 2015; 10(7):e0132378. [DOI:10.1371/journal.pone.0132378] [PMID] [PMCID] [DOI:10.1371/journal.pone.0132378]
32. [32] Hau J, Schapiro SJ, editors. Handbook of laboratory animal science: Essential principles and practices. Vol. I. Boca Raton: CRC Press; 2002. [DOI:10.1201/9781420040913] [DOI:10.1201/9781420040913]
33. [33] Steiner S, Niessner A, Ziegler S, Richter B, Seidinger D, Pleiner J, et al. Endurance training increases the number of endothelial progenitor cells in patients with cardiovascular risk and coronary artery disease. Atherosclerosis. 2005; 181(2):305-10. [DOI:10.1016/j.atherosclerosis.2005.01.006] [PMID] [DOI:10.1016/j.atherosclerosis.2005.01.006]
34. [34] Delavar H, Nogueira L, Wagner PD, Hogan MC, Metzger D, Breen EC. Skeletal myofiber VEGF is essential for the exercise training response in adult mice. Am J Physiol Regul Integr Comp Physiol. 2014; 306(8):R586-95. [DOI:10.1152/ajpregu.00522.2013] [PMID] [PMCID] [DOI:10.1152/ajpregu.00522.2013]
35. [35] Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia- initiated angiogenesis. Nature. 1992; 359(6398):843-5. [DOI:10.1038/359843a0] [PMID] [DOI:10.1038/359843a0]
36. [36] Brinkmann Ch, Metten A, Scriba Ph, Tagarakis CVM, Wahl P, Latsch J, et al. Hypoxia and hyperoxia affect serum angiogenic regulators in T2DM men during cycling. Int J Sports Med. 2017; 38(2):92-8. [DOI:10.1055/s-0042-116823] [PMID] [DOI:10.1055/s-0042-116823]
37. [37] Ranjbar K, Ardakanizade M, Nazem F. Endurance training induces fiber type-specific revascularization in hindlimb skeletal muscles of rats with chronic heart failure. Iran J Basic Med Sci. 2017; 20(1):90-8. [DOI:10.22038/ijbms.2017.8101] [PMID] [PMCID]
38. [38] Niebauer J, Cooke JP. Cardiovascular effects of exercise: Role of endothelial shear stress. J Am Coll Cardiol. 1996; 28(7):1652-60. [DOI:10.1016/S0735-1097(96)00393-2] [DOI:10.1016/S0735-1097(96)00393-2]
39. [39] Cornachione A, Cação-Benedini LO, Martinez EZ, Neder L, Mattiello-Sverzut AC. Effects of eccentric and concentric training on capillarization and myosin heavy chain contents in rat skeletal muscles after hindlimb suspension. Acta Histochem. 2011; 113(3):277-82. [DOI:10.1016/j.acthis.2009.10.009] [PMID] [DOI:10.1016/j.acthis.2009.10.009]
40. [40] Infanger M, Kossmehl P, Shakibaei M, Baatout S, Witzing A, Grosse J, et al. Induction of three-dimensional assembly and increase in apoptosis of human endothelial cells by simulated microgravity: Impact of vascular endothelial growth factor. Apoptosis. 2006; 11(5):749-64. [DOI:10.1007/s10495-006-5697-7] [PMID] [DOI:10.1007/s10495-006-5697-7]
41. [41] Infanger M, Ulbrich C, Baatout S, Wehland M, Kreutz R, Bauer J, et al. Modeled gravitational unloading induced downregulation of endothelin‐1 in human endothelial cells. J Cell Biochem. 2007; 101(6):1439-55. [DOI:10.1002/jcb.21261] [PMID] [DOI:10.1002/jcb.21261]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Vessels and Circulation

Designed & Developed by : Yektaweb